Trends in water-promoted oxygen dissociation on the transition metal surfaces from first principles.

نویسندگان

  • Ming Yan
  • Zheng-Qing Huang
  • Yu Zhang
  • Chun-Ran Chang
چکیده

Dissociation of O2 into atomic oxygen is a significant route for O2 activation in metal-catalyzed oxidation reactions. In this study, we systematically investigated the mechanisms of O2 dissociation and the promoting role of water on nine transition metal (Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) surfaces. It was found that on clean metal surfaces, the dissociation of O2 was most favorable on Co(0001) and most difficult on Au(111), according to the free energy barriers of Co (0.03 eV) < Rh (0.20 eV) < Ni (0.26 eV) < Cu (0.45 eV) < Ir (0.62 eV) < Pd (0.65 eV) < Pt (0.92 eV) < Ag (1.07 eV) < Au (2.50 eV). With the involvement of water, O2 and H2O formed an O2H2O complex via hydrogen bonding interactions, being accompanied by an increased co-adsorption free energy of 0.17-0.52 eV and a more activated O-O bond. More importantly, the introduction of water reduced the barriers of O2 dissociation on all the nine metal surfaces, with the reduction of the free energy barrier ranging from 0.03 eV on Co(0001) to 1.05 eV on Au(111). The intrinsic reasons for the promotional role of water are attributed to the hydrogen bonding effect between O2 and H2O and the electronic modification effect induced by the water-surface interaction. These results provide a fundamental understanding of the catalytic role of water in O2 dissociation on the transition metal surfaces and may be helpful in the rational design of new efficient catalysts for the oxidation reactions using molecular oxygen or air.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-Principles Modeling of Direct versus Oxygen-Assisted Water Dissociation on Fe(100) Surfaces

The O–H bond breaking in H2O molecules on metal surfaces covered with pre-adsorbed oxygen atoms is an important topic in heterogeneous catalysis. The adsorption configurations of H2O and relevant dissociation species on clean and O-pre-adsorbed Fe(100) surfaces were investigated by density functional theory (DFT). The preferential sites for H2O, HO, O, and H were investigated on both surfaces. ...

متن کامل

Autocatalytic and cooperatively stabilized dissociation of water on a stepped platinum surface.

Water-metal interfaces are ubiquitous and play a key role in many chemical processes, from catalysis to corrosion. Whereas water adlayers on atomically flat transition metal surfaces have been investigated in depth, little is known about the chemistry of water on stepped surfaces, commonly occurring in realistic situations. Using first-principles simulations, we study the adsorption of water on...

متن کامل

First-principles study of water on copper and noble metal (110) surfaces

Water structure and dissociation kinetics on a model open metal surface: Cu 110 , has been investigated in detail based on first-principles electronic structure calculations. We revealed that in both monomer and overlayer forms, water adsorbs molecularly, with a high tendency for diffusion and/or desorption rather than dissociation on clean surfaces at low temperature. Studying water on other n...

متن کامل

Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles

Poor oxygen evolution reaction (OER) catalysis limits the efficiency of H2 production from water electrolysis and photoelectrolysis routes to large-scale energy storage. Despite nearly a century of research, the factors governing the activity of OER catalysts are not well understood. In this Perspective, we discuss recent advances in understanding the OER in alkaline media for earth-abundant, f...

متن کامل

Properties of metal–water interfaces studied from first principles

Properties of the metal–water interface have been addressed by periodic density functional theory calculations, in particular with respect to the electronic and geometric structures of water bilayers on several transition metal surfaces. It will be demonstrated that the presence of the metal substrate leads to a significant polarization of the water bilayer. This causes a substantial water-indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2017